
THE MAGIC OF DREAMS

LUCA CINQUINI
NASA JET PROPULSION LABORATORY AND CALIFORNIA INSTITUTE OF TECHNOLOGY
ON BEHALF OF THE ESGF AND DREAM COLLABORATION
© 2018 CALIFORNIA INSTITUTE OF TECHNOLOGY. GOVERNMENT SPONSORSHIP ACKNOWLEDGED

(… OR “ON THE USE OF CONTAINERIZATION TECHNOLOGIES IN THE DISTRIBUTED
RESOURCES FOR THE ESGF ADVANCED MANAGEMENT (“DREAM”) PROJECT,
DISCUSSED DURING THE MIDDLEWARE AND GRID INTERAGENCY COORDINATION
(“MAGIC”) TEAM MONTHLY MEETING)

ESGF Overview
ESGF is an international collaboration of climate centers working together to manage
and provide access to climate data - models and observations

Started more than a decade ago, now the world premier technology infrastructure in
support of climate science

Spanning several tens of institutions in Europe, North America, Australia and Asia

Funding from DOE, NASA (U.S.), Copernicus (EU), NCI (Australia), CRIM (Canada)

Winner of the 2017 “R&D 100 Award” - prestigious conference that every year
recognizes the top 100 most innovate products in software, science and technology

Current and Future Data Holdings
ESGF hosts some of the most prominent data collections for
climate change research:

CMIP3, CMIP5 (“Coupled Model Inter-Comparison
Project“): output of global climate models used for
periodic IPCC assessment reports on climate change

CORDEX (“COrdinated Regional climate Downscaling
EXperiment"): output of regional climate models, grouped
by domain (N. America, Europe, Antarctica, etc.)

Obs4MIPs (“Observations for Model Inter-Comparison”):
observational data from NASA, ESA, etc. formatted to
look like climate model output

Ana4MIPS (“ReAnalysis for Model Inter-Comparison”):
re-analysis data formatted like model output

Many other MIPs: TAMIP, GeoMIP, DCMIP, …

Upcoming CMIP6: 25-40 PB of uncompressed data
replicated at 4 “Tier-1” Nodes

HadCM3

CORDEX

Obs4MIPs

Software Stack

Integration of several components from the open source community, climate
applications, and developed by ESGF

Services are grouped into 5 categories according to functionality: User Interface,
Index Node, Identity Provider, Data Node, Compute Node

Overall, a very large software stack that is deployed at each Node in the federation

ESGF Node

ESGF Data Node

Data NodeIdentity Provider NodeWeb User Interface

POSTGRES DATA

Index Node

esgf-idp
(Tomcat)

Postgres

Apache httpd

CoG
(mod_wsgi)

esgf-search webapp
(Tomcat)

Dashboard UI
esgf access control filtersPostgres

SOLR CATALOGS

Solr
(Jetty)

Stores local metadata
catalogs and replicas,

enables searching
web accessible UI for

human users

Front-End
network proxy

Solr
(Jetty)Solr

(Jetty)Solr
(Jetty)

MyProxy

SLCS + OAuth servers

User authentication,
issues temporary

credentials

Compute Node

Live Access Server
(Tomcat)

WPS CWT Server

CDAT Back-End

Ophidia Back-End

CDES Back-EndVisus

Data processing, sub-
setting and visualization

Data storage and access

Threads Data Server
(Tomcat)

Openid Relying Party

ESGF Publisher Client

Dashboard Information
Provider

Dashboard stats API
(Tomcat)

GridFTP Server

Globus Connect Server

ESGF OAuth Client

THREDDS CATALOGS

Some Problems with current ESGF System

Difficult to install and upgrade, impossible to roll back

Installation driven by a gigantic, unmaintainable shell
script

Architecture is not very flexible or easy to scale

Because of the installation barrier, it’s difficult to add new
software modules and functionality

DREAM: Distributed Resources
for the ESGF Advanced Management

Goal: design and implement the
next generation ESGF architecture:
more modular, scalable, easier to
install and upgrade, applicable to
other science domains

Strategy: modularization and
interaction via RESTful APIs

Implementation: use
containerization technologies to
design a new ESGF architecture
based on micro-services

Containerization Technologies
Docker to containerize each ESGF service

Docker Compose to prototype service
interaction on single host

Docker Swarm and Docker Stack to deploy
all ESGF services on multiple hosts

Kubernetes, as alternative orchestration
engine on multiple hosts

Helm for configuring, packaging and
deploying Kubernetes resources

OpenShift Origin, as prototype Platform-
As-A-Service for managing the K8s cluster

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise, does not constitute or imply its endorsement by the United States Government or the Jet Propulsion Laboratory,

California Institute of Technology.

ESGF/Docker Architecture w/ Swarm
All ESGF services packaged as Docker containers

Services deployed on hosts of specific type using metadata labels

ESGF Database Node

ESGF Front-End Node

ESGF User Interface Node ESGF Index Node ESGF Identity Provider
Node ESGF Data NodeESGF Data NodeESGF Data Node

POSTGRES DATA

Apache httpd

CoG
(mod_wsgi)

esgf-search webapp
(Tomcat)

Dashboard UI
(Tomcat)

Postgres
SOLR CATALOGS

Stores local metadata
catalogs and replicas,

enables searching

web accessible UI for
human users

Front-End
network proxy

User authentication,
issues temporary

credentials
Data storage and access

Dashboard Information
Provider

Dashboard stats API
(Tomcat)

THREDDS CATALOGS

Solr
(Jetty)Solr

(Jetty)Solr
(Jetty)Solr

(Jetty)
esgf-idp
(Tomcat)

SLCS + OAuth servers

Threads Data Server
(Tomcat)

esgf access control filters

Openid Relying Party
(Tomcat)

ESGF Publisher Client

ESGF OAuth Client

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise, does not constitute or imply its endorsement by the United States Government or the Jet Propulsion Laboratory,

California Institute of Technology.

ESGF/DOCKER/SWARM TESTBED ON AMAZON WEB SERVICES
USING AN ECS (ELASTIC CONTAINER SERVICE) CLUSTER OF 5 NODES

Advantages of Micro-Services Architecture
Easier installation: simply download and deploy the Docker images
through Docker Stack or Kubernetes (no more complex compilation and
installation at each site; also, everybody runs exactly the same binary)

Easier upgrade: download a new version of the images, start the
containers

Rollback an upgrade, if needed

Scalable, as multiple containers on the same host, or on multiple hosts

More flexible architecture options: Complete Node, Data Node, Index
Node, …

Better testing

Deployable anywhere

ESGF/DOCKER/KUBERNETES TESTBED ON OPEN-SHIFT CLUSTER
USING SINGLE-NODE MINI-SHIFT CLUSTER ON DEVELOPER’S LAPTOP

Lessons Learned
In most cases, legacy applications are not built to be deployed in a dynamic,
distributed environment

Assume application data are stored in a persistent location (which is not the
default case with containers or pods, which can be moved from host to host)
- must configure Docker or Kubernetes “volumes” to persist data

Assume static IP addresses/hostnames (while IP addresses and hostnames
are assigned dynamically in a containerized architecture) - must configure
Docker or Kubernetes “services”

May use “customized” versions of open source software packages
(Postgres, Tomcat, Solr, …)

Consequently, legacy applications need to be partially re-architected or re-
configured to be deployed and scaled as containers

Steep learning curve for application developers and system administrators

It’s relatively easy to write a Docker file and create a Docker image

It’s more difficult to run a set of Docker containers with Docker Compose or
Docker Swarm, must understand the semantics and capabilities of the
framework (especially, networking and persistent storage)

It’s even more difficult to run them in a Kubernetes cluster

Best Practices
Run a single process per container, whenever possible

Use multi-stage builds to create Docker images with reduced size

Use official Docker images when available (smaller and more secure)

Tomcat, Solr, http, etc…

Persist application data with Docker Volumes or Kubernetes Persistent Volumes

Use Docker Services, Kubernetes Services or OpenShift Routes to address the
applications with persistent endpoints

Run also administration tasks/commands inside containers

No “residual” OS dependencies

Express dependencies between containers startup

Use Docker-Compose “dependsOn” semantics

Or Kubernetes “initContainers” to delay the start of dependent containers

Conclusion
Despite these difficulties, ESGF and DREAM are fully committed
to the micro-services architecture model

Goals:

Release a feature-complete ESGF/Docker architecture by the
end of 2018

Run at least some operational sites with the ESGF/Docker
architecture, either in-premise or on the Cloud

